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Abstract: Mn(IV)-peroxo and Mn(V)-oxo corroles were synthe-
sized and characterized with various spectroscopic techniques.
The intermediates were directly used in O-O bond cleavage and
formation reactions. Upon addition of proton to the Mn(IV)-peroxo
corrole, the formation of the Mn(V)-oxo corrole was observed.
Interestingly, addition of base to the Mn(V)-oxo corrole afforded
the formation of the Mn(IV)-peroxo corrole. Thus, we were able
to report the first example of reversible O-O bond cleavage and
formation reactions using in situ generated Mn(IV)-peroxo and
Mn(V)-oxo corroles.

Dioxygen O-O bond-cleaving and bond-forming reactions occur
at transition metal centers in a number of metalloenzymes. For
example, heme and nonheme iron monooxygenases bind and
activate O2 to generate high-valent iron-oxo intermediates via O-O
bond cleavage of iron(III)-peroxo precursors, [Fe(III)-O2]+.1 The
O-O bond activation of iron-O2 adducts has for that reason been
intensively investigated using synthetic iron porphyrins to elucidate
mechanisms of the iron-oxo intermediate formation over the past
several decades (e.g., heterolysis vs homolysis).2

In the case of the O-O bond formation, the photosynthetic
conversion of water into dioxygen occurs at the oxygen-evolving
complex (OEC) in photosystem II (PS II); a manganese(V)-oxo
intermediate has been implicated as an active species for the O-O
bond formation.3 Very recently, Gao et al. reported an elegant result
that the reaction of a Mn(V)-oxo corrole and hydroxide affords O2

evolution; the O-O bond formation in the reaction was proposed
to occur via nucleophilic attack of hydroxide ion on a Mn(V)-oxo
moiety.4 Thus, O-O bond cleavage and O-O bond formation
reactions in metalloenzymes have been successfully mimicked by
biomimetic model studies. However, reversible O-O bond cleavage
and formation between metal-O2 and metal-oxo species has not been
successfully modeled.5 Herein we report the first example of a
reversible conversion between manganese-peroxo and -oxo corrole
complexes via O-O bond cleavage and formation processes (see
Scheme 1).

Addition of 1.2 equiv of H2O2 to a solution containing a
manganese(III) corrole, Mn(TFMPC) (1, 3 × 10-2 mM) (TFMPC
) 5,10,15-tris(3,5-trifluoromethylphenyl)corrolato trianion) (see
structure in Supporting Information (SI), Figure S1), and
tetramethylammonium hydroxide (TMAH, 20 equiv) in CH3CN

at 10 °C afforded the formation of a new intermediate, 2, with
absorption bands at 435 and 590 nm within 1 min (Scheme 1,
reaction A; Figure 1 and SI, Figure S2 for UV-vis spectral
changes). The intermediate was stable enough to be characterized
by various spectroscopic methods (∼10 min at 10 °C). The
electrospray ionization mass spectrum (ESI MS) of 2 exhibited
a prominent ion peak at a mass-to-charge ratio (m/z) of 1090.8,
which corresponds to the mass and isotope distribution pattern
of [Mn(TFMPC)(O2)(CH3CN)(CH3OH)]- (calculated m/z 1091.1;
Figure 2a). The ESI MS of 2, prepared with D2O2 in D2O,
showed the identical mass peak (SI, Figure S3), whereas 2,
prepared with H2

18O2 in H2
16O, showed a mass peak at m/z

1094.8, which corresponds to [Mn(TFMPC)(18O2)(CH3CN)-
(CH3OH)]- (Figure 2a, inset). The 4 mass unit increase upon
the substitution of 16O with 18O indicates that 2 contains an O2

unit derived from H2O2. The X-band EPR spectrum of 2
exhibited a broad signal at g ≈ 4 (Figure 2b and SI, Figure S4
for EPR spectra taken during reactions), which we assign to a
high-spin S ) 3/2 Mn(IV) with a strong zero-field splitting.6

Taken together, the spectroscopic data provide strong evidence
that 2, generated in the reaction of 1 and H2O2 in the presence
of base, is a high-spin Mn(IV) complex bearing an O2 ligand,
[Mn(IV)(TFMPC)(O2)]-.7
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Figure 1. UV-vis spectra of 2 (solid blue line), 3 (solid red line), after
addition of acid (20 equiv of HClO4) to 2 (dashed green line), and after
addition of base (20 equiv of TMAH) to 3 (dashed black line).

Scheme 1
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We then synthesized a Mn(V)-oxo corrole complex, 3, by
reacting 1 with 2.0 equiv of iodosylbenzene (PhIO) in CH3CN at
10 °C (Scheme 1, reaction B; Figure 1 and SI, Figure S5 for
UV-vis spectral changes).8 The ESI MS of 3 exhibited a prominent
ion peak at m/z 1002.1, whose mass and isotope distribution pattern
corresponds to Mn(TFMPC)(O) (calculated m/z 1002.1; Figure 3a).
When 3 was prepared with isotopically labeled PhI18O in the
presence of H2

18O, a mass peak corresponding to Mn(TFMPC)(18O)
appeared at m/z 1004.2 (calculated m/z 1004.1; Figure 3a, inset). 3
is EPR silent (SI, Figure S4), suggesting a diamagnetic d2 (S ) 0)
species as has been reported for other Mn(V)-oxo corrole and
corrolazine complexes.8,9 The resonance Raman spectrum of 3,
measured in CH3CN at -40 °C with 442-nm laser excitation,
displays an isotope sensitive band at 957 cm-1, which shifts to 920
cm-1 upon introduction of 18O (Figure 3b). The observed isotopic
shift of -37 cm-1 with 18O substitution is in close agreement with
the value calculated for a Mn-O diatomic oscillator (-42 cm-1).
The calculated force constant for the 957 cm-1 mode by a simple
Hook’s law is 6.7 mdyne/Å, which is consistent with triply bonded
Mn-O bonds in Mn(V)-oxo complexes.8c,9,10 Taken together, the
spectroscopic data demonstrate that 3 is a Mn(V)-oxo corrole with
a Mn-O triple bond, MnV(O)(TFMPC).

Remarkably, a reversible conversion between the Mn(IV)-peroxo
and Mn(V)-oxo corroles was observed upon addition of acid and
base (Scheme 1, reactions C and D); this reversible cycle could be
repeated several times without showing a significant decrease of
the absorption bands corresponding to the products. First, the
Mn(IV)-peroxo complex, 2, was converted to the Mn(V)-oxo
complex, 3, upon addition of HClO4 (Scheme 1, reaction C); the
full formation of 3 was confirmed by the UV-vis and EPR spectra
of the resulting solution (Figure 1 and SI, Figure S4). In addition,

2 was converted to 3 by addition of benzoyl chloride (data not
shown). It has been well-documented that the reactions of metal-
peroxo species, including Mn(III)-peroxo porphyrins, with benzoyl
chloride lead to formation of their corresponding high-valent metal-
oxo species.11 However, the O-O bond cleavage mechanism of
the putative Mn(IV)-OOH intermediate is not yet clear at this
moment (see Scheme 2 for O-O bond homolysis vs heterolysis).
Nevertheless, to our knowledge, this is the first demonstration of
the analogous conversion of a Mn-peroxo corrole to a Mn-oxo
corrole upon protonation.

In the O-O bond formation reaction, addition of base to the
Mn(V)-oxo complex, 3, produced the Mn(IV)-peroxo complex, 2,
quantitatively (Scheme 1, reaction D; Figure 1). The formation of
2 was further confirmed by taking EPR and ESI MS of the resulting
solution; a broad signal at g ≈ 4 was observed in the EPR spectrum
(SI, Figure S4). In ESI MS experiments, 2 prepared in the reaction
of Mn(V)16O and 16OH- contained an 16O16O group (SI, Figure
S6). Similarly, 2 prepared in the reaction of Mn(V)18O and 16OH-

contained an 18O16O group (SI, Figure S6). These results demon-
strate that the peroxo ligand in 2 was generated by the O-O bond
formation between the Mn-oxo moiety in 3 and the hydroxide ion,
followed by a deprotonation of a hydroperoxo ligand by another
hydroxide ion (Scheme 2).4,12 However, there is an electron missing
in the proposed mechanism, and this is probably due to a greater
stability of a Mn(IV)-peroxo corrole species under the reaction
conditions.

In conclusion, we have synthesized and characterized new
Mn(IV)-peroxo and Mn(V)-oxo corroles and used them in O-O
bond cleavage and formation reactions. We have also shown the
first example of reversible O-O bond cleavage and formation
between high-valent metal-oxo and metal-peroxo species. Future
studies will be focused on understanding mechanistic aspects
involved in the O-O bond cleavage and formation processes.
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